Cancer metabolism as a therapeutic target: metabolic synthetic lethality.
نویسندگان
چکیده
Interest in targeting metabolism as a possible cancer therapy has been renewed in recent years as research increases our understanding of the altered metabolic profile of cancer cells compared with that of normal cells. As mentioned by Drs. Batra, Rosen, and Shanmugam, metabolic reprogramming allows tumor cells to survive and proliferate in the hostile tumor environment. Alterations in tumor cell metabolism lead to higher energy production, induction of anabolic pathways, and maintenance of cellular redox potential. These mechanisms are essential for the survival and proliferation of tumor cells. Metabolic processes are regulated by genetic events that render cancer cells dependent on certain nutrients, such as glutamine and lipids. Moreover, hypoxia in cancer cells that are distant from their oxygen supply will lead to the induction of hypoxia-inducible factor 1α (HIF-1α), a transcription factor that is responsible for changes in metabolism that support the survival of cells in hypoxic tumor areas. Several aspects of metabolism are altered in tumor cells—including glucose and glutamine metabolism, as the authors have mentioned—but we would like to point out that lipid metabolism also has a crucial role in tumorigenesis.
منابع مشابه
Investigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data
Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods:Metabolism of c...
متن کاملSynthetic Genetic Targeting of Genome Instability in Cancer
Cancer is a leading cause of death throughout the World. A limitation of many current chemotherapeutic approaches is that their cytotoxic effects are not restricted to cancer cells, and adverse side effects can occur within normal tissues. Consequently, novel strategies are urgently needed to better target cancer cells. As we approach the era of personalized medicine, targeting the specific mol...
متن کاملTherapeutic Implications of Targeting Energy Metabolism in Breast Cancer
PPARs are ligand activated transcription factors. PPARγ agonists have been reported as a new and potentially efficacious treatment of inflammation, diabetes, obesity, cancer, AD, and schizophrenia. Since cancer cells show dysregulation of glycolysis they are potentially manageable through changes in metabolic environment. Interestingly, several of the genes involved in maintaining the metabolic...
متن کاملSynthetic lethality-based targets for discovery of new cancer therapeutics.
Synthetic lethality is based on the incompatibility of cell survival with the loss of function of two or more genes, not with loss of function of a single gene. If targets of synthetic lethality are deregulated or mutated in cancer cells, the strategy of synthetic lethality can result in significant increase of therapeutic efficacy and a favourable therapeutic window. In this review, we discuss...
متن کاملDomesticating Cancer: An Evolutionary Strategy in the War on Cancer
Since cancer shares the same molecular machinery as the host, most therapeutic interventions that aim to target cancer would inadvertently also adversely affect the host. In addition, cancer continuously evolves, streamlining its host-derived genome for a new single-celled existence. In particular, short-term clinical success observed with most antineoplastic therapies directly relate to the fa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oncology
دوره 27 5 شماره
صفحات -
تاریخ انتشار 2013